Convergence of sparse collocation for functions of countably many Gaussian random variables (with application to elliptic PDEs)

نویسندگان

  • Ernst
  • B. Sprungk
  • L. Tamellini
  • Paola Pietra
  • Oliver G. Ernst
  • Björn Sprungk
  • Lorenzo Tamellini
چکیده

We give a convergence proof for the approximation by sparse collocation of Hilbert-space-valued functions depending on countably many Gaussian random variables. Such functions appear as solutions of elliptic PDEs with lognormal diffusion coefficients. We outline a general L2-convergence theory based on previous work by Bachmayr et al. (2016) and Chen (2016) and establish an algebraic convergence rate for sufficiently smooth functions assuming a mild growth bound for the univariate hierarchical surpluses of the interpolation scheme applied to Hermite polynomials. We verify specifically for Gauss-Hermite nodes that this assumption holds and also show algebraic convergence w.r.t. the resulting number of sparse grid points for this case. Numerical experiments illustrate the dimension-independent convergence rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse tensor discretizations of elliptic PDEs with random input data

We consider a stochastic Galerkin and collocation discretization scheme for solving elliptic PDEs with random coefficients and forcing term, which are assumed to depend on a finite, but possibly large number of random variables. Both methods consist of a hierarchic wavelet discretization in space and a sequence of hierarchic approximations to the law of the random solution in probability space....

متن کامل

Stochastic Collocation for Elliptic PDEs with random data - the lognormal case

We investigate the stochastic collocation method for parametric, elliptic partial differential equations (PDEs) with lognormally distributed random parameters in mixed formulation. Such problems arise, e.g., in uncertainty quantification studies for flow in porous media with random conductivity. We show the analytic dependence of the solution of the PDE w.r.t. the parameters and use this to sho...

متن کامل

Analytic regularity and collocation approximation for PDEs with random domain deformations

In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem is remapped on to a corresponding PDE with a fixed deterministic domain. We show that the solution can be analytically extended to a well defined reg...

متن کامل

Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

In this work we provide a convergence analysis for the quasi-optimal version of the Stochastic Sparse Grid Collocation method we had presented in our previous work “On the optimal polynomial approximation of Stochastic PDEs by Galerkin and Collocation methods” [6]. Here the construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and onl...

متن کامل

Tensor-structured methods for parameter dependent and stochastic elliptic PDEs

Modern methods of tensor-product decomposition allow an efficient data-sparse approximation of functions and operators in higher dimensions [5]. The recent quantics-TT (QTT) tensor method allows to represent the multidimensional data with log-volume complexity [1, 2, 3]. We discuss the convergence rate of the Tucker, canonical and QTT stochastic collocation tensor approximations to the solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017